
6.842 Randomness and Computation Feb 13, 2020

Lecture 4

Lecturer: Ronitt Rubinfeld Scribe: Anlong Chua

Given some decision problem, can we count the number of ways to satisfy it? Such questions are
often referred to as “counting problems.” Often, counting problems are hard. In this lecture,
we will see how to efficiently approximate the answer to counting problems.

1 Counting Solutions

Let ϕ be a boolean formula, for example, ϕ = x1x2∨x3. Three questions we can ask are:

1. Is ϕ satisfiable?

2. How many satisfying assignments are there?

3. Is it possible to generate a satisfying assignment uniformly at random?

Last lecture, we saw that if ϕ is a DNF formula, then there are efficient algorithms for answering
the first and third questions. Let us give a heuristic argument for why the second problem is
computationally hard. Given any CNF ϕ in n variables, its negation ϕ is a DNF. Since

# of satisfying assignments for ϕ = 2n −# of satisfying assignments for ϕ,

the problem of deciding whether ϕ is satisfiable is reduced to deciding whether ϕ has 2n sat-
isfying assignments. Since deciding whether CNFs are satisfiable is a hard problem, counting
solutions to a DNF must also be hard.

More generally, given a decision problem, we can turn it into a counting problem, which asks for
the number of ways to satisfy the decision problem. Of course, the counting problem is at least
as hard as the decision problem. We have just seen that it is sometimes possible for an easy
decision problem to have a hard counting problem. On the other hand, there are combinatorial
problems with “easy” counting problems - for example, counting the number of spanning trees
in a graph. This problem can be solved in polynomial time using Kirchhoff’s Matrix Tree
Theorem. This discussion is summarized in Table 1.

Decision problem Counting problem Approximate counting

CNF NP-complete #P-complete Hard

DNF Polytime #P-complete Polytime

Perfect matching Polytime #P-complete Open problem 1

Spanning trees Polytime Polytime Polytime

Table 1: Hardness of some decision and counting problems.

1Known polytime for dense and bipartite graphs
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2 Approximate Counting

We have seen that counting solutions can be hard. Can we make the situation less bleak by
weakening our requirements? Let’s make this concrete.

Definition 1 (Approximate Counting for Boolean Formulas). Let ϕ be a boolean formula. Let
z be the number of satisfying assignments to ϕ, and let ε > 0 be a parameter. A randomized
approximation scheme is an algorithm that outputs a number y such that

z

1 + ε
≤ y ≤ z(1 + ε)

with probability at least 3/4.

If the runtime of this scheme is polynomial in |ϕ| and 1
ε , we call it a Fully Polynomial Ran-

domized Approximation Scheme (or FPRAS for short).

One can easily generalize this definition for arbitrary counting problems.

Remark What if we want a success probability greater than 3/4? In Problem Set 1, we will
see how to bootstrap the FPRAS to construct an algorithm with success probability at least
1− δ, for any δ > 0. This comes with an O

(
log 1

δ

)
multiplicative cost.

Let #SAT denote the counting problem for SAT. Can one find a FPRAS for #SAT? We claim
that a FPRAS for #SAT gives a polynomial time randomized algorithm for SAT. Indeed, if ϕ
is a satisfiable CNF formula, the FPRAS outputs a positive number y ≥ 1

1+ε with probability
at least 3/4; and if ϕ is not satisfiable, the FPRAS outputs y = 0 with probability at least 3/4.
Thus, assuming that BPP 6= NP, there is no FPRAS for #SAT.

On the other hand, no such restriction applies for #DNF, since the decision problem is easy.
In fact, we will construct a FPRAS for #DNF in the coming sections. This discussion is
summarized in the third column of Table 1.

3 Approximate Counting for #DNF

A key idea in the construction of a FPRAS for #DNF is downward self-reducibility.

3.1 Downward Self-Reducibility

Roughly speaking, saying that a problem is downward self-reducibile (dsr) is saying that one can
compute its solution by solving smaller subproblems, and piecing these together via polynomial
time computation.

Let’s apply this to #DNF. If ϕ = ϕ(x1, . . . , xn) is a boolean formula in n variables, let
ϕ1 = (1, . . . , xn) be the formula that results when hard-coding x1 = 1, and similarly let ϕ0 =
(0, . . . , xn). We iteratively define ϕb1b2...bk = ϕ(b1, . . . , bk, xk+1, . . . , xn) for bi ∈ {0, 1}.

For any boolean formula ϕ, let #ϕ be the number of satisfying assignments to ϕ. Then

#ϕ = #ϕ0 + #ϕ1 = #ϕ00 + #ϕ01 + #ϕ10 + #ϕ11 = . . . .
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Example 2. Let ϕ = x2 ∨x2x1 ∨x2x1. The number of satisfying assignments can be computed
using the following tree.

#ϕ = 3

#ϕ0 = 1

ϕ00 = True ϕ01 = False

#ϕ1 = 2

ϕ10 = True ϕ11 = True

Let Fb0...bk = #ϕb1b2...bk . For example, this means that F is the number of satisfying assignments
of ϕ, which is what we wish to compute. Let

S1 =
F1

F

be the fraction of satisfying assignments with x1 = 1. The key idea is that we can approximate
S1, and approximate F1 via the dsr strategy. This allows us to approximate F . Thus, instead
of having to compute the number of solutions for the entire tree (with 2n nodes), we only have
to explore one path down the tree.

3.2 Downward Self-Reducibility for #DNF

Now, assume that ϕ is a DNF formula. The key idea is to use the polynomial time uniform
satisfying assignment generator from last lecture. Generate k satisfying assignments uniformly
at random, and set

Ŝ1 =
# generated assignments with x1 = 1

k
.

If k is large enough, Chernoff bounds guarantee that Ŝ1 is a good approximation of S1. We will
make this precise in Section 3.4.

Why did we arbitrarily choose to count solutions with x1 = 1? What if there is no satisfying
assignment with x1 = 1? We will address these concerns later. For now, assume that we choose
some sequence of bits b1 . . . bn which is actually a satisfying assignment for ϕ. Let

Sb1...bi =
Fb1...bi
Fb1...bi−1

.

Then

F =
Fb1
Sb1

=
Fb1b2

Sb1Sb1b2
=

Fb1...bn∏
i Sb1...bi

=
1∏

i Sb1...bi
.

Thus, if we can approximate each Sb1...bi , we can approximate F . This formula reveals two
issues with our approach. First, we require that b1 . . . bn be a satisfying assignment. Indeed, if
this were not the case, our algorithm would just return F = 0. Second, Chernoff bounds only
give us additive estimates for Sb1...bi . However, what we really want is to obtain multiplicative
estimates for F , so we will have to somehow turn these additive estimates into multiplicative
ones.
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To solve both problems, we do not choose each bit bi arbitrarily. Instead, we pick the bi = 1 if
more generated satisfying assignments have xi = 1 (than xi = 0), and bi = 0 otherwise.

We first claim that following this strategy will always lead us to a satisfying assignment. This
is clear, because our generator only outputs satisfying assignments. Since a nonempty DNF
always has satisfying assignments, we can inductively show that this strategy only ever follows
branches with satisfying assignments.

Next, if k is large enough (say k = O(n)), Chernoff bounds tell us that we will pick a child
with at least 1/3 of the satisfying assignments with high probability (see Section 3.4). To be
precise, we want the probability of error to be δ ≈ 1

8n . If this happens, setting k large enough
(k ∈ Poly(n, ε−1)) to give an additive error of say ε

6n (with probability 1− 1
8n), we have

r +
ε

6n
= r

(
1 +

ε

6nr

)
≤ r

(
1 +

ε

2n

)
,

and a similar manipulation shows that the Chernoff lower bound for Ŝi becomes r
(
1 + ε

2n

)−1
,

where r =
Fb1...bi
Fb1...bi−1

≥ 1/3.

How often do these estimates all hold? Recall that we chose k large enough so the probability
we go down a subtree with less than 1/3 of the satisfying assignments is δ ≈ 1

8n . The probability
that our estimate for r is not within our range is also bounded by 1

8n . Taking a union bound over
these events, the probability that we make such a mistake at least once is at most 2n(1/8n) =
1/4. Therefore, the probability that we always go down a subtree with many (at least 1/3 of the
current total) solutions, and always get a good estimate of r, is at least 3/4. In this case,

output =
1∏

i Ŝb1...bi
≤ (1 + ε/2n)n∏

i Sb1...bi
=
(

1 +
ε

2n

)n
F ≤ (1 + ε)F

with a similar lower bound; this is exactly what is required of a FPRAS.

To summarize, our FPRAS for #DNF is:

Algorithm 1: FPRAS for #DNF

Result: Approximate number of solutions to a DNF formula
Estimate S0 and S1 using uniform generation
b1 ← argmax{0,1}(S0, S1)
Recurse to compute Fb1
Return F = Fb1/Sb1

Its runtime is

n ·# samples required to get
ε

4n
additive error · runtime of generator.

Via Chernoff bounds, the second term is polynomial in (ε/4n)−1, and we saw last lecture that
the last term is polynomial in n. Hence the runtime of our FPRAS is polynomial in n and
1
ε .

Our algorithm works whenever all our estimates of the “larger side” hold, which happens with
probability at least 3/4, by our earlier discussion.
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Remark Why did we have to go through all this trouble? Couldn’t we randomly generate
arbitrary assignments of the boolean variables, and compute what fraction of these satisfy
ϕ? Well, the problem with this method is that we may have to generate exponentially many
assignments to get a statistically significant estimate of F (if, say, there are very few satisfying
assignments).

3.3 Downward Self-Reducibility in General

It is not hard to see that our algorithm did not rely on any special features of the DNF problem.
We only required a polynomial time solution generator to exist. Thus, for any dsr problem,
we have shown how to turn a polynomial time generation algorithm into a polynomial time
approximate solution counting algorithm.

3.4 Explicit Computation of Chernoff Bounds

Theorem 3. Let X =
∑n

i=1Xi, where Xi = 1 with probability pi and Xi = 0 with probability
1− pi, and all Xi independent. Let µ = E[X]. Then

P(|X − µ| ≥ δµ) ≤ 2 exp
(
−µδ2/3

)
.

(See, for example, Prof. Goemans’ notes2.)

Recall our set-up: we are using a uniform random generator to generate solutions to #DNF.
We are interested in answering the following questions:

1. We go down the subtree with more generated solutions. What is the probability we go
down a subtree that has fewer than 1/3 of the total solutions?

2. Let r be the fraction of solutions with, say, xi = 1. If r̂ is our observed fraction, how close
is r̂ to r?

Let us answer question 1 first. Suppose we generate k solutions, and without loss of generality,
the fraction of solutions with xi = 1 is r < 1/3. Let Xi ∼ Ber(r) be the event that we draw
a solution with xi = 1. Then we go down the branch with xi = 1 if

∑
Xi ≥ k/2. Since

µ = E[X] = rk < k/3, take δ = k
6µ = 1

6r . Then

P(|X − µ| ≥ δµ) ≤ 2 exp
(
−µδ2/3

)
≤ exp(−ck)

where c is some constant. So if we take k = O(n), the probability we go down the “wrong”
branch is much less than 1

8n , as was required.

Now we answer question 2. Re-using our notation from earlier, X = kr̂ and µ = kr. We want
to be within ε

6n of r, so we take δ = kε
6nµ = ε

6nr . Then (note r ≤ 1)

P
(
|kr̂ − kr| ≥ εk

6n

)
≤ 2 exp

(
−µδ2/3

)
≤ exp

(
−c ε

2

n2
k

)
,

so it suffices to take k = O((n/ε)3) ∈ Poly(n, ε−1). Thus our estimate of r is good with very
high probability (much larger than 1− 1

8n).

2http://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
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4 Approximate Uniform Generation

To begin the section, let’s formalize our definition of uniform solution generation.

Definition 4. A uniform generator for solutions of a problem π is an algorithm that, on input
x, outputs a uniform random solution for π(x). More precisely, define

Sx := {z | z is a solution to π(x)}.

A uniform generator outputs y ∈ Sx with probability 1
|Sx| , and should run in time Poly(|x|).

Extrapolating from our past examples, uniform generation might be hard, but it may be possible
to approximate a uniform distribution on the solutions. The correct definition turns out to
be:

Definition 5. An almost uniform generator for solutions of a problem π is an algorithm that,
on input x and parameter ε, satisfies

1

|Sx|
1

1 + ε
≤ P[output y] ≤ 1

|Sx|
(1 + ε)

for all y ∈ Sx, and should run in time poly(|x|, ε−1).

In our last section, we saw that given a uniform generator for a dsr problem, we could construct
an approximate counting algorithm. It is natural to wonder if, given an approximate counting
algorithm, we can construct a uniform generator.

4.1 Approximate Uniform Generation for #DNF

Let’s try to construct an almost uniform generator for #DNF. For this purpose, first assume
that we have a perfect counting algorithm for #DNF.

Using the perfect counter, we first compute r0 = F0 and r1 = F1. We recurse on the formula
ϕ0 with probability r0

r0+r1
, and recurse on the formula ϕ1 otherwise.

It is easy to see that we always reach a satisfying assignment. The probability that we output
a single assignment is

P[output assignment b = (b1 . . . bn)] =
Fb1
F
· Fb1b2
Fb1

. . .
1

Fb1...bn−1

=
1

F

which is indeed the uniform distribution over satisfying assignments.

Now, as we have seen, perfectly counting solutions to #DNF is hard. So, what happens if we
only have an approximate counter? If we run our approximate counter with error parameter
ε′ < ε/2n, then

P[output assignment b = (b1 . . . bn)] =
F̂b1

F̂
· F̂b1b2
F̂b1

. . .
1

̂Fb1...bn−1

≤ 1

F

(
1 + ε′

1− ε′

)n
≤ 1

F

1

1− ε
≈ 1

F
(1 + ε)
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with a matching lower bound. Hence, we get an almost uniform generator for #DSR.

It is easy to generalize this construction to any dsr problem. In fact, Jerrum, Valiant and
Vazirani proved:

Theorem 6 (Jerrum, Valiant, Vazirani). For any problem in NP that is dsr, a polytime almost
uniform generator exists if and only if a polyime approximate counter exists.

7


